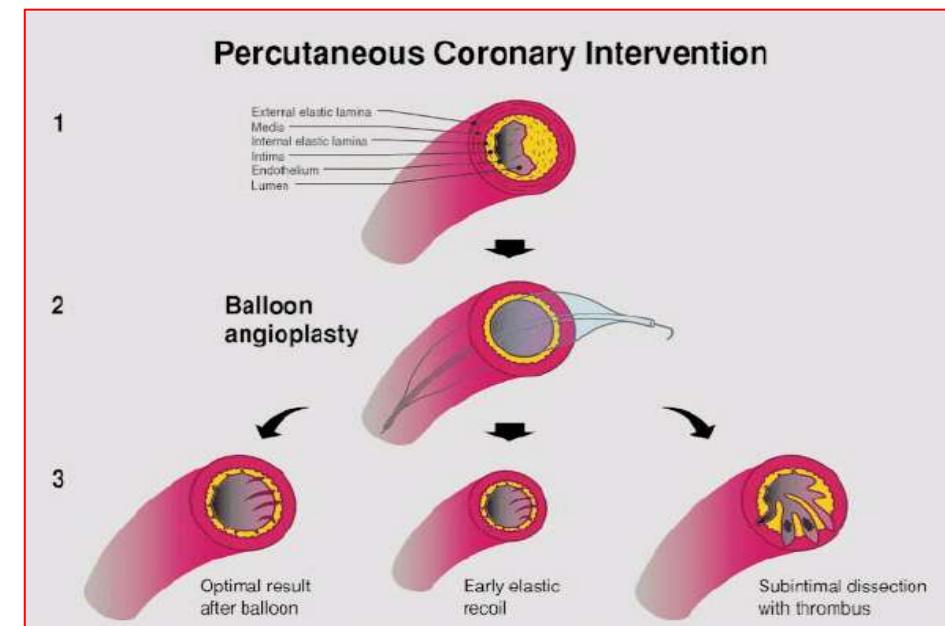
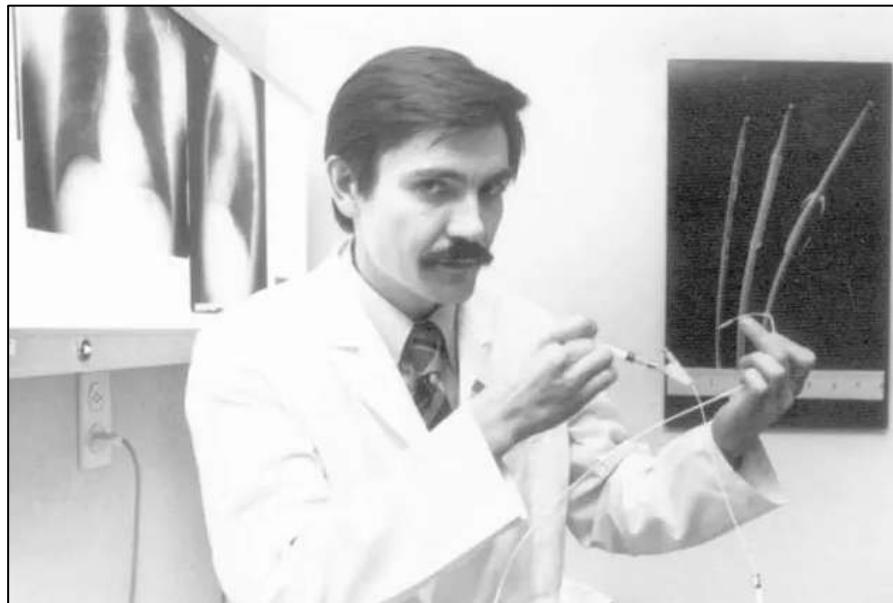
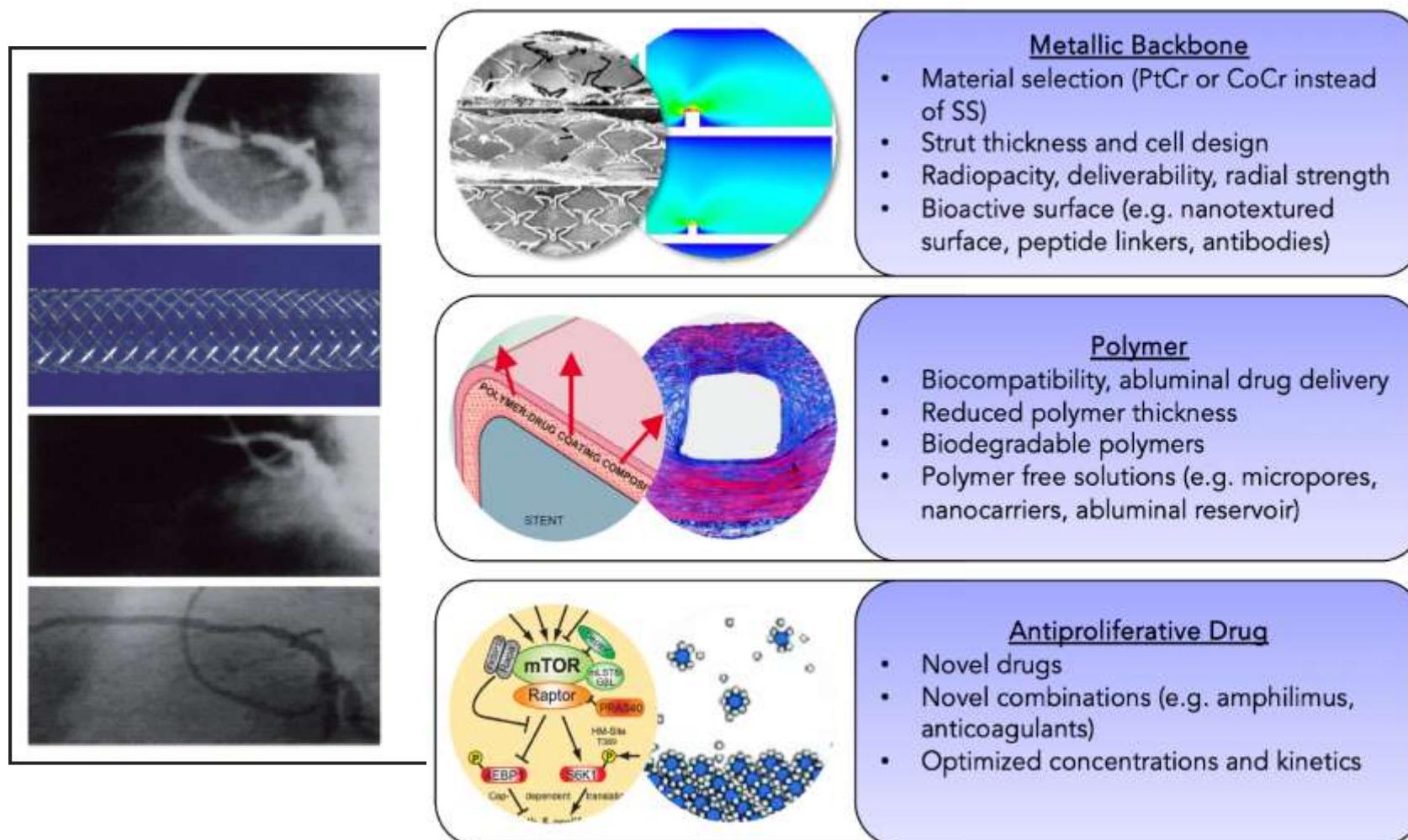


Long-term outcomes of drug coated balloons versus drug eluting stents in patients with small vessel coronary artery disease

Inga Botchorishvili


FIRST
DO NO HARM.

HIPPOCRATES

First Balloon Angioplasty

1977

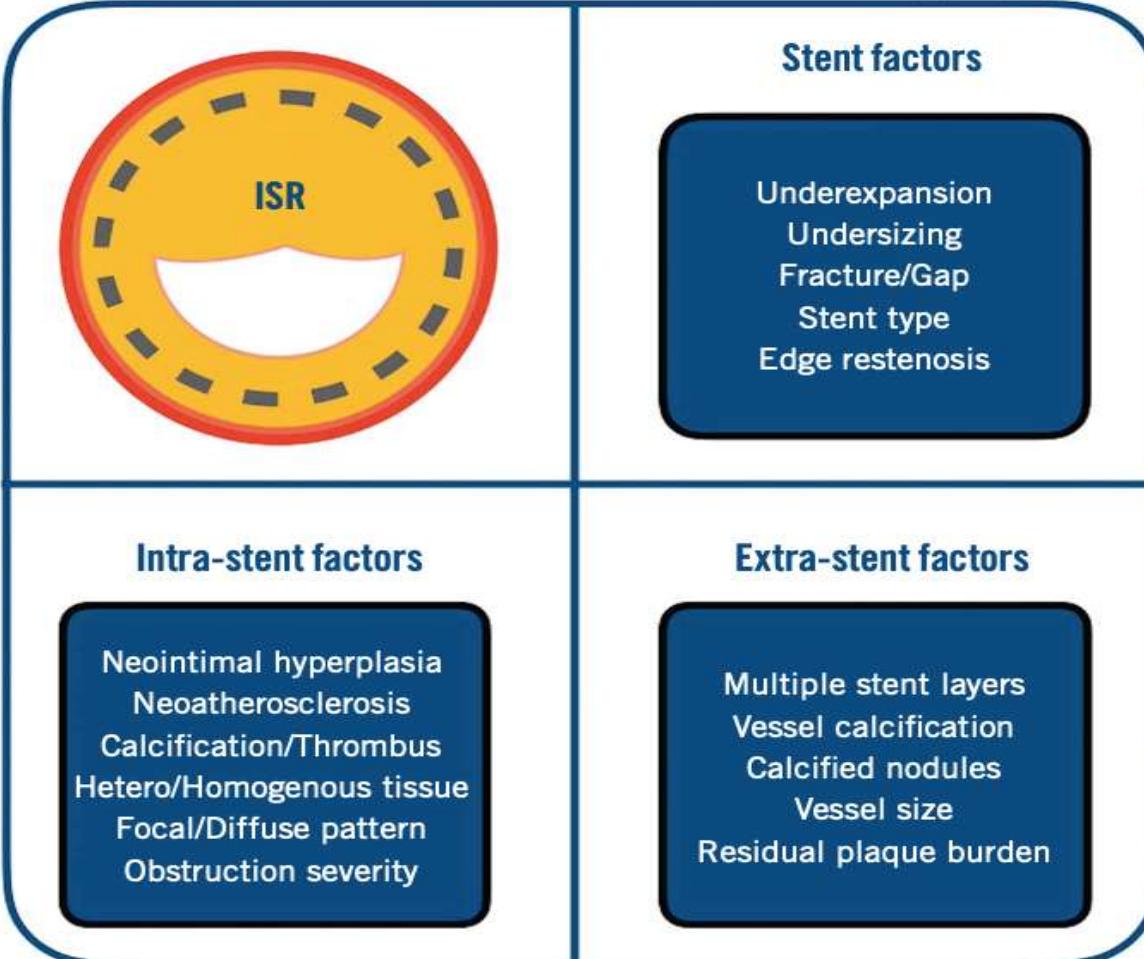
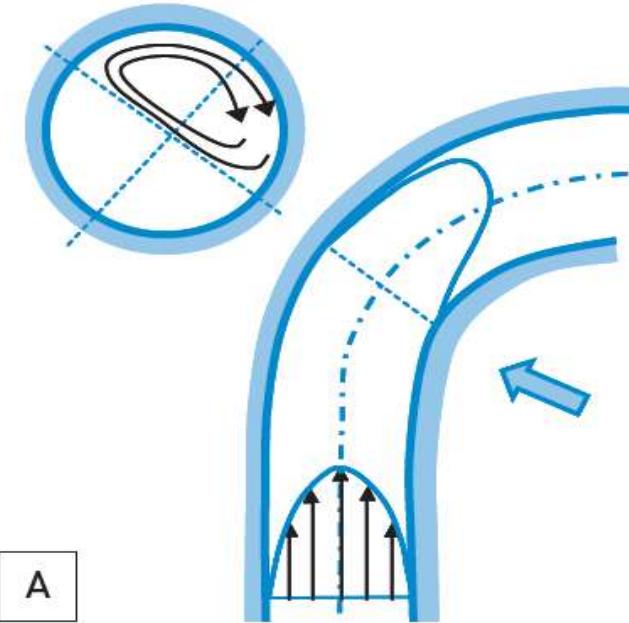
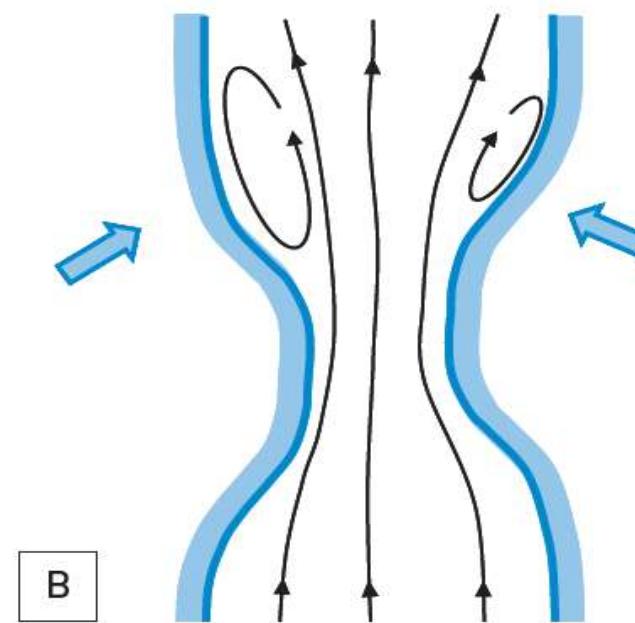
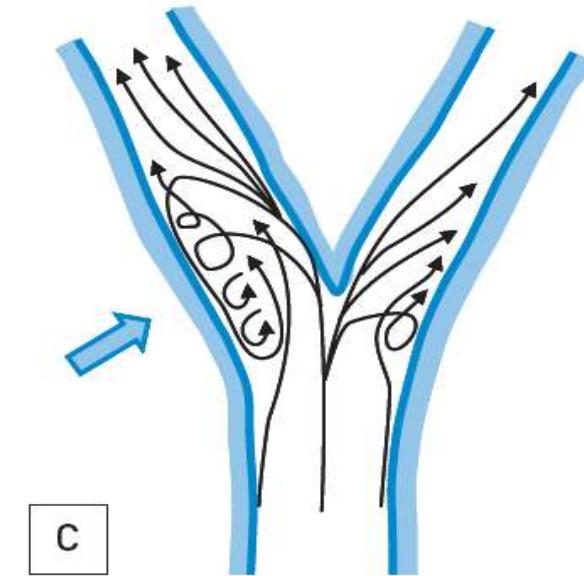


Figure 1

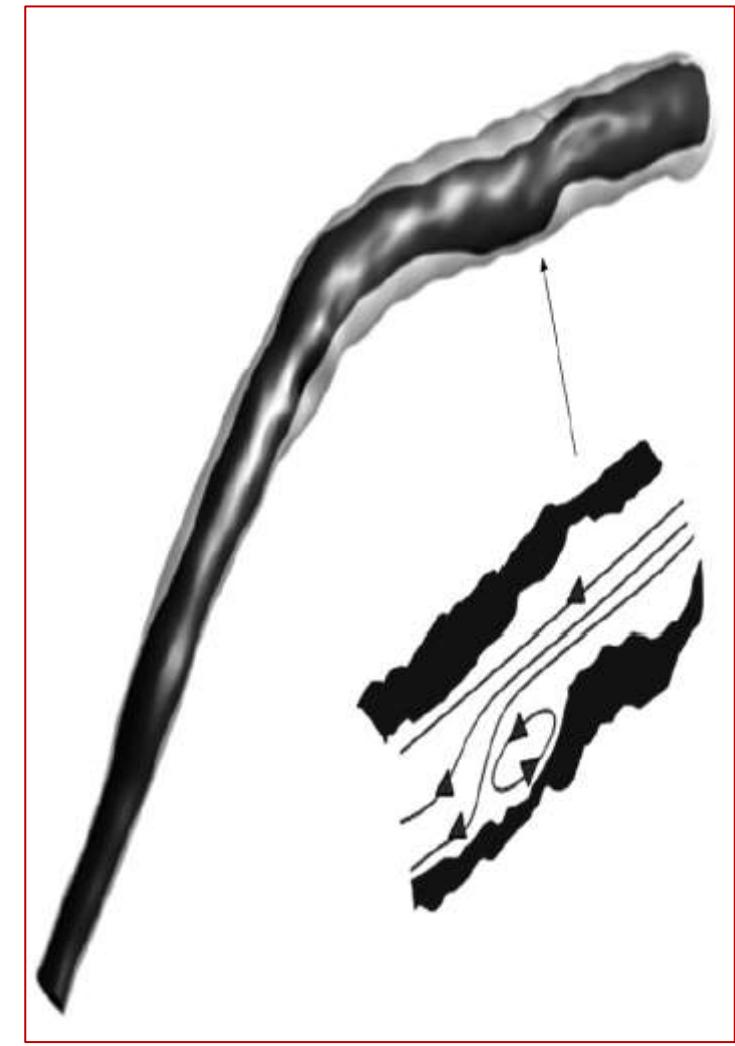
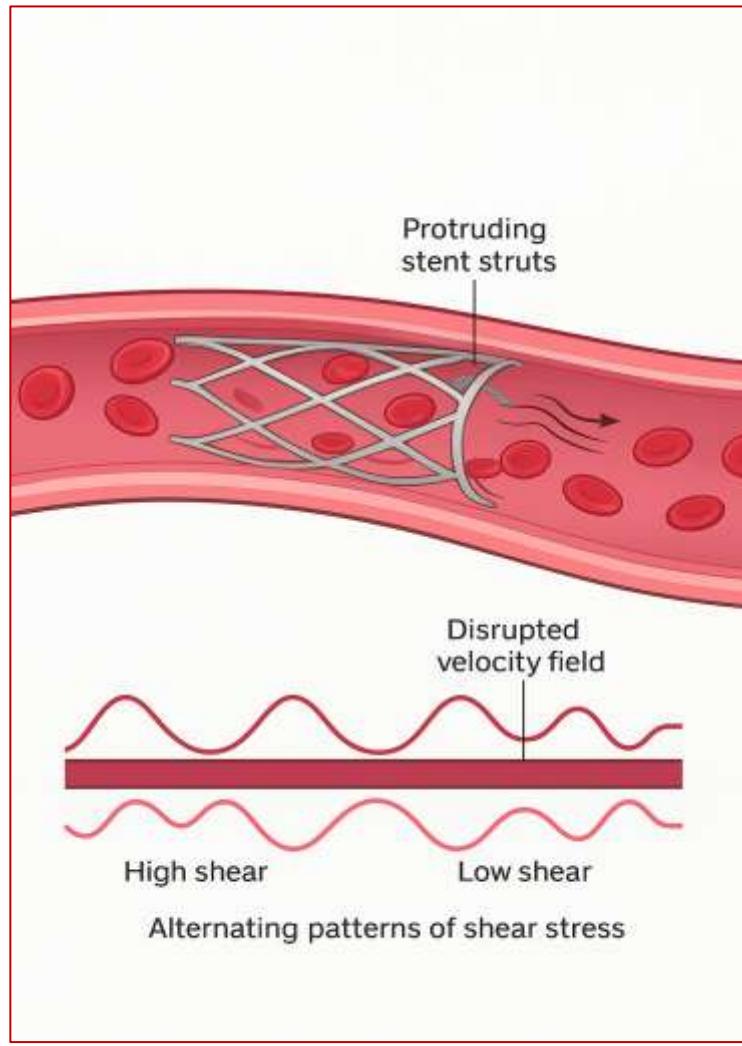
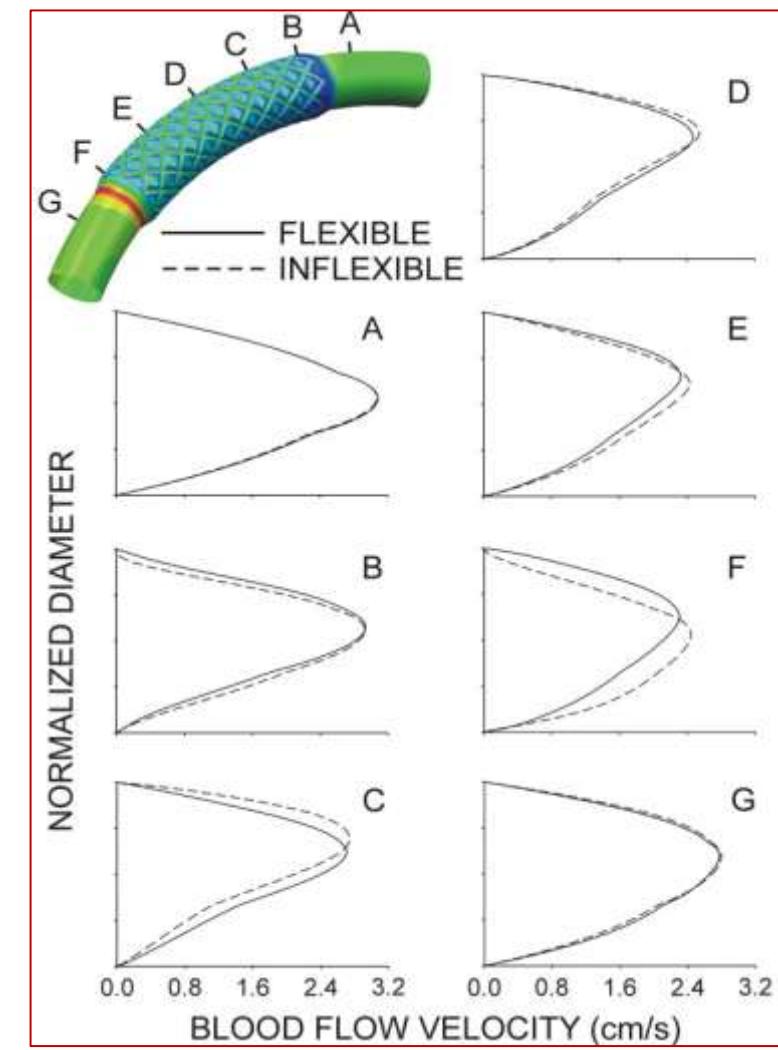

First human coronary stent implantation in March 1986. (a) Restenosis post balloon angioplasty (b) Self-expanding WALLSTENT (c) Immediate results post stent (d) Angiographic results at 11-year follow-up.


In-stent restenosis


Even with the latest generation of DES,
device-associated annual event rates of 2 to 3
% are seen beyond the first year

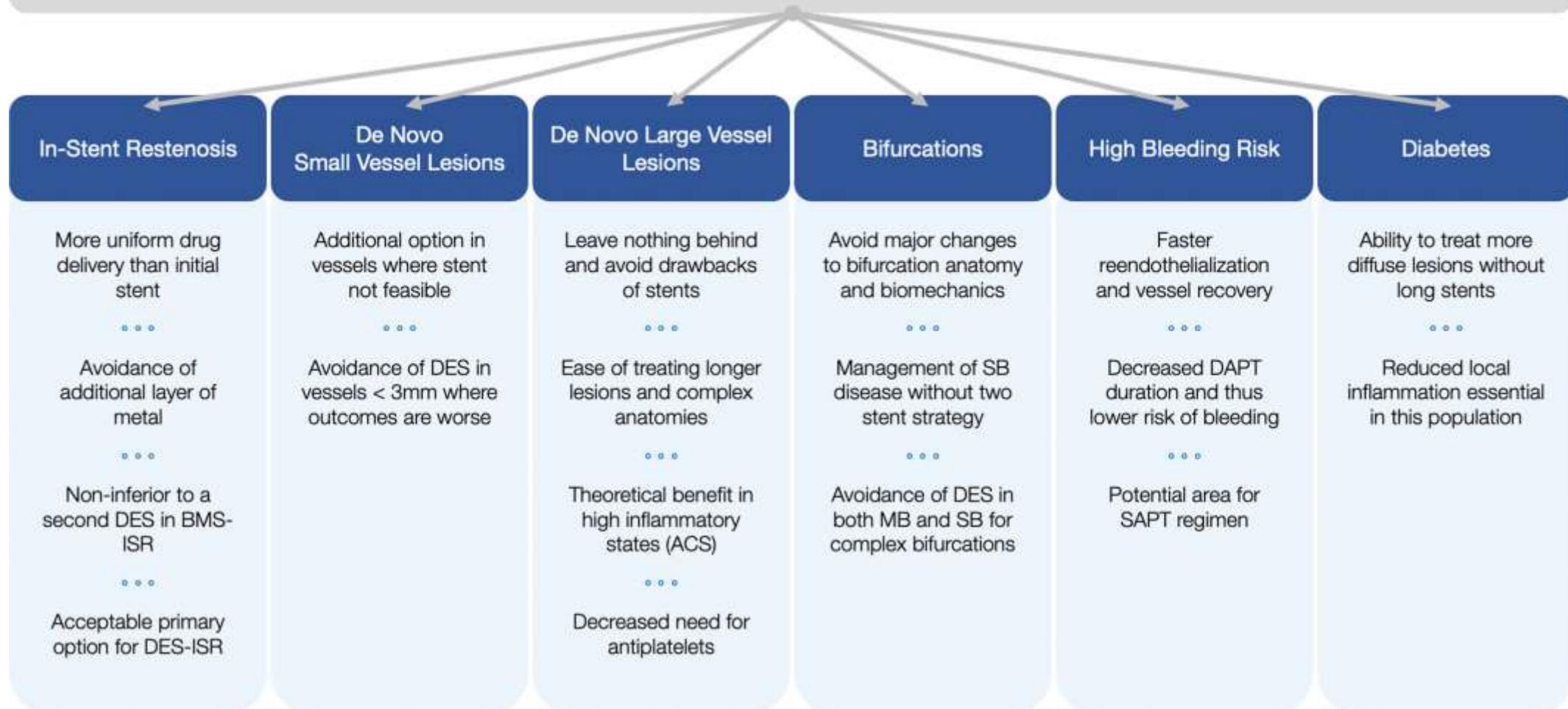
A

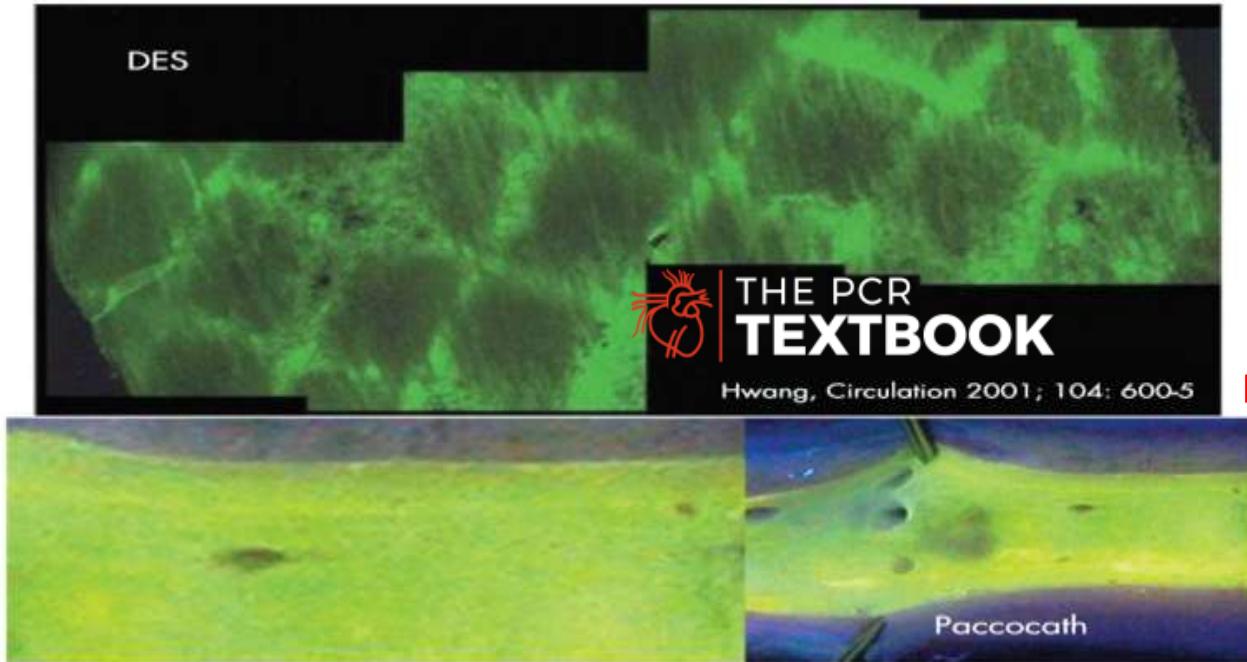
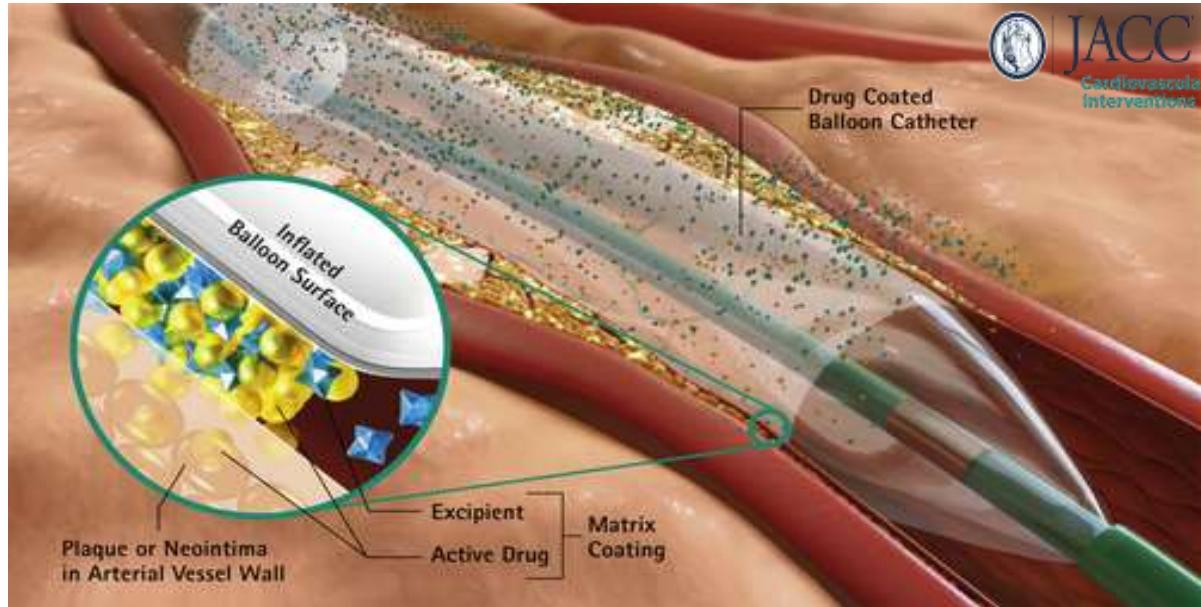
B




C

Biomechanical stresses acting on the arterial wall. The normal stress component is the blood pressure (red arrow), and the tangential stress component is the shear stress (green arrow).

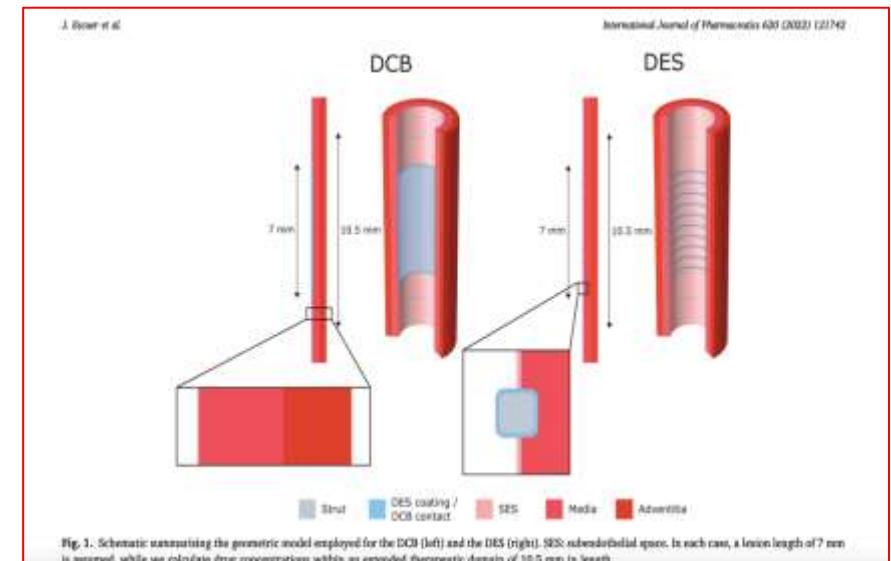
Blood flow induced shear stresses at the vessel wall. The shear stress is defined by the product of blood viscosity and shear rate and for Poiseuille flow it can be directly computed from viscosity (η), flow rate (Q) and diameter (D).


SHEAR STRESS IN STENTED SEGMENTS

De novo lesions in small vessels

- The interventional treatment of coronary small-vessel disease, usually defined as lesions in vessels ≤ 2.75 or < 3.0 mm, remains challenging
- Although DES are as effective in small as in large vessels, the resulting late lumen loss occupies a higher percentage of the respective vessel diameter - leading to higher rates of ISR and clinical events.
- DCB angioplasty for small-vessel disease (SVD) represents a compelling treatment option that may potentially reduce both restenosis and target lesion thrombosis by circumventing the implantation of a permanent metallic layer.


Drug-Coated Balloons

They are composed of :

- Semicompliant polyurethane and nylon balloons
- coated with antiproliferative drugs often encapsulated within a biocompatible, lipophilic polymer matrix.
- Balloons are coated using micropipetting, dipping, spraying, or imprinting techniques
- Commonly coated with paclitaxel, due to its hydrophobic and lipophilic properties which enable delivery and drug retention in tissue after short balloon inflation.

Baseline data	
Number of patients	120
Age	68.0±8.1 years
Male gender	87 (72.5%)
Hypertension	105 (87.5%)
Hyperlipidaemia	97 (80.8%)
Diabetes mellitus/insulin-dependent	41 (34.2%)/12 (10.0%)
Coronary artery disease	Single-vessel disease Two-vessel disease Three-vessel disease
Lesion location	LAD LCX RCA
Lesion type	Type A Type B1 Type B2 Type C Other
Reference diameter	2.36±0.19 mm
Lesion length	11.46±4.72 mm
Minimal lumen diameter before intervention	0.71±0.25 mm
Minimal lumen diameter post intervention	1.89±0.30 mm
Acute lumen gain	1.18±0.37 mm
Deployment pressure	11.9±3.0 mmHg
Balloon inflation time	57.3±17.3 sec
Balloon length	16.6±5.2 mm
GP IIb/IIIa antagonists	2 (1.7%)

PEPCAD I

Inclusion criteria:
stable or unstable angina, or an abnormal functional study and a single *de novo* lesion in a native coronary artery with a reference diameter between 2.25 mm and 2.8 mm.

Exclusion criteria :

- acute myocardial infarction within 48 hours preceding the procedure
- severe renal insufficiency (GFR <30 ml/min),
- known hypersensitivity or contraindication to the required medication,
- malignancies with a life expectancy of less than three years.
- Angiographic exclusion criteria encompassed lesions more than 22 mm long, stenoses below 70% of the luminal diameter, unprotected left main stenosis, lesions with a major side branch (>2 mm),
- restenoses.

Primary endpoint :after six months in-segment late lumen loss

Secondary endpoints :stent thrombosis, target lesion revascularisation, myocardial infarction death up to three years

paclitaxel-coated balloon

	0 to 12 months		12 to 36 months	
	DCB only	DCB+BMS	DCB only	DCB+BMS
Count (N)	82 (68.3%)	32 (26.7%)	82 (68.3%)	32 (26.7%)
Missing (N)	0 (0%)	0 (0%)	6/82 (7.3%)	3/32 (9.4%)
Deaths				
Total	0 (0%)	0 (0%)	0/32 (0%)	1/82 (1.2%)
Cardiac	0/82 (0%)	0/32 (0%)	0/82 (0.0%)	0/32 (0%)
- Lesion-related	0/82 (0.0%)	0/32 (0%)	0/82 (0.0%)	0/32 (0%)
- Non-lesion-related	0/82 (0.0%)	0/32 (0%)	0/82 (0.0%)	0/32 (0%)
- Unknown	0/82 (0.0%)	0/32 (0%)	0/82 (0.0%)	0/32 (0%)
Non-cardiac (no MACE)	0/82 (0%)	0/32 (0%)	1/82 (1.2%)	0/32 (0%)
Myocardial infarction				
Total	**1/82 (1.22%)	**1/32 (3.1%)	0/82 (0%)	0/32 (0%)
CK-elevation >3 times upper normal limit	**1/82 (1.3 %)	**1/32 (3.1 %)	0/82 (0.0%)	0/32 (0 %)
Stent thromboses	0/82 (0%)	*2/32 (6.3%)	0/82 (0.0%)	0/32 (0 %)
Premature discontinuation of clopidogrel	0/82 (0.0%)	0/32 (0.0%)	0/82 (0.0%)	0/32 (0 %)
Per protocol anti-aggregation	0/82 (0.0%)	*2/32 (6.3%)	0/82 (0.0%)	0/32 (0 %)
PCI or CABG for in-segment stenosis >50%	4/82 (4.9%)	9/32 (28.1%)	0/32 (0%)	0/32 (0%)
PCI or CABG for in-lesion stenosis >50%	4/82 (4.9%)	9/32 (28.1%)	0/82 (0%)	0/32 (0%)
PCI/CABG for target vessel stenosis >50%***	1/82 (1.2%)	3/32 (9.4%)	2/82 (2.4%)	1/32 (3.1%)
PCI or CABG for other vessel stenosis >50%	8/82 (9.8%)	6/32 (18.8%)	1/82 (1.2%)	0/32 (0%)
Total events	14/82 (17.1%)	21/32 (68.8%)	4/82 (4.9%)	1/32 (3.1%)
Three-year MACE: TLR, lesion-related myocardial infarction, and cardiac death	5/82 (6.1%)	12/32 (37.5%)	0/82 (0%)	0/32 (0%)

Target lesion was dilated once for at least 30 seconds with the paclitaxel-coated balloon catheter

The compliance of the balloon allowed for a diameter range from 2.3 mm (5 atm) to 2.8 mm (15 atm).

In the case of severe elastic recoil or dissection, bare metal stents were deployed.

Randomized Controlled trials on DCB Only in De Novo Lesions of Small Coronary Vessels

1396

Jeger *et al.*

Third International DCB Consensus Group Report

JACC: CARDIOVASCULAR INTERVENTIONS VOL. 13, NO. 12, 2020

JUNE 22, 2020:1391-402

TABLE 3 Randomized Controlled Trials of DCB Only in De Novo Lesions of Small Coronary Vessels									
Study Name (Ref. #)	Comparators	n	Follow-Up Duration	Angiographic Follow-Up	p Value	MACE (%)	p Value	TLR (%)	p Value
PICCOLETO (58)	Dior PCB vs. TAXUS Liberté PES	57	6 months (angio) 9 months (clinical)	MLD 1.11 ± 0.65 mm vs. 1.94 ± 0.72 mm	0.0002	35.7 vs. 13.8	0.054	32.1 vs. 10.3	0.15
BELLO (59,66)	IN.PACT Falcon PCB vs. TAXUS Liberté PES	182	6 months (angio) 12 months (clinical) 3 yrs (clinical)	LLL 0.08 ± 0.38 mm vs. 0.29 ± 0.44 mm	0.001	10 vs. 16.3	0.21	4.4 vs. 7.6	0.37
RESTORE SVD (61)	Restore PCB vs. Resolute Integrity ZES	230	9-12 months (angio) 12 months (clinical)	LLL 0.26 ± 0.42 mm vs. 0.30 ± 0.35 mm, diameter stenosis $29.6 \pm 2.0\%$ vs. $24.1 \pm 2.0\%$	0.41, <0.001	9.6 vs. 9.6	1.0	4.4 vs. 2.6	0.72
BASKET- SMALL 2 (60)	Sequent Please PCB vs. TAXUS Element PES and Xience EES	758	6 months (angio)* 12 months (clinical)	LLL 0.13 mm (-0.14 to 0.57 mm) vs. 0.10 mm (-0.16 to 0.34 mm)	0.72	8 vs. 8	0.918, 0.0152†	3.4 vs. 4.5	0.438

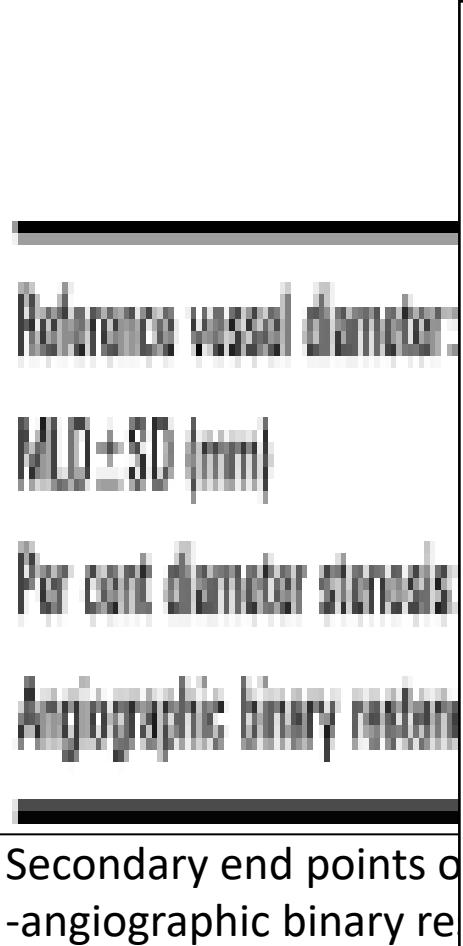
Only randomized controlled trials in patients with lesions in native coronary vessels ≤ 2.75 or 3.0 mm are included. *Only clinically indicated angiography. †Noninferiority. ZES = zotarolimus-eluting stent; other abbreviations as in Tables 1 and 2.

Table 3 Six months angiographic outcomep
0.81**Paclitaxel-coated balloon versus drug-eluting stent during PCI of small coronary vessels, a prospective randomised clinical trial. The PICCOLETO Study**se,¹ Andrea Micheli,¹ Andrea Picchi,¹ Amelia Coppolaro,¹
¹ Silva Severi,² Ugo Limbruno¹

of these two trials concluded that this new method of local drug delivery would not require stent implantation to fight restenosis.

The purpose of this study was to evaluate the impact of a PCB during PCI of small native coronary vessels compared to standard treatment with DES.

METHODSThe PICCOLETO study was a prospective, single centre, randomised trial comparing the efficacy of the Dior PCB (Eurocor, Bonn, Germany) with Taxus Libertè DES (Boston Scientific Corporation, Natick, MA, USA) in small coronary arteries (diameter ≤ 2.75 mm). The study was entirely conducted at the interventional cardiology unit of Ospedale della Misericordia in Grosseto, Italy.


Between August 2007 and August 2008, after obtaining informed written consent, all consecutive patients of at least 18 years of age with stable or unstable angina and a clinical indication for PCI of at least one small coronary artery were randomised to treatment with PCB or Taxus stent.

Patients were excluded from the study if they met at least one of the following criteria: acute myocardial infarction within the previous 48 h, unstable haemodynamics, chronic renal insufficiency with a serum creatinine level of more than 2.0 mg/dl, known hypersensitivity or contraindication to aspirin, heparin, clopidogrel or paclitaxel, sensitivity to contrast media that could not be controlled with premedication and life expectancy of less than 2 years.

Randomisation was performed in a 1:1 ratio by computerised, open-label assignment in consecutive blinded envelopes. A randomly permuted blocks method was used to generate the randomisation plan. Although operators were not blinded to the device used, the clinical end points were adjudicated by two investigators blinded with regard to patients' treatment allocation. A local ethics committee approved the study. This clinical trial obtained an EudraCT code (2009-012268-15).

The Dior PCB is a coronary dilation catheter with a nanoporous balloon surface coated with paclitaxel microcrystals. Paclitaxel coating concentration is 3 µg/mm² of balloon surface area, homogeneously distributed. During inflation, the drug is released onto the vessel wall.Patients randomised to the control group were treated with the Taxus Libertè DES described elsewhere.¹¹ PCB were available in diameters of 2.25, 2.5 and 2.75 mm, and in lengths of 15–25 mm. Taxus

This was attributed to inadequate drug delivery due to the DCB design, as well as poor vessel preparation before DCB use.

Secondary end points of angiographic binary restenosis, occurrence of major adverse cardiac events (MACE: death, new ST elevation myocardial infarction¹² and TLR) at 9 months clinical follow-up (non-inferiority).

CONCLUSIONS

The PICCOLETO II trial for the first time shows the angiographic superiority in terms of LLL, and the equivalence in terms of MLD and percent diameter stenosis, of a novel DCB over 1 of the best-in-class DES for the treatment of de novo coronary lesions in small vessels. This trial also shows the clinical noninferiority of the DCB strategy after 12 months.

JACC CARDIOVASCULAR INTERVENTIONS
© 2020 Published by Elsevier on behalf of the American College of Cardiology Foundation

VOL. 13 NO. 24, 2020

Drug-Coated Balloon Versus Drug-Eluting Stent for Small Coronary Vessel Disease

PICCOLETO II Randomized Clinical Trial

Bernardo Cortese, MD,^a Gaetano Di Palma, MD,^a Marcos Garcia Guimaraes, MD,^b Davide Piraino, MD,^c Pedro Silva Orrego, MD,^d Dario Buccheri, MD,^e Fernando Rivero, MD,^d Anna Perotto, RN,^d Giulia Zambelli, MD,^c Fernando Alfonso, MD^b

ABSTRACT

OBJECTIVES This study sought to compare the performance of a novel drug-coated balloon (DCB) (Elutax SV, Aachen Resonance, Germany), with an everolimus-eluting stent (EES) (Abbott Vascular, Santa Clara, California) in patients with de novo lesions.

BACKGROUND Small vessel coronary artery disease (SVD) represents one of the most attractive fields of application for DCB. To date, several devices have been compared with drug-eluting stents in this setting, with different outcomes.

METHODS The PICCOLETO II (Drug Eluting Balloon Efficacy for Small Coronary Vessel Disease Treatment) trial was an international, investigator-driven, multicenter, open-label, prospective randomized controlled trial where patients with de novo SVD lesions were randomized to DCB or EES. Primary study endpoint was in-lesion late lumen loss (LLL) at 6 months (independent core laboratory), with the noninferiority between the 2 arms hypothesized. Secondary endpoints were minimal lumen diameter, percent diameter stenosis at angiographic follow-up, and the occurrence of major adverse cardiac events at 12 months.

RESULTS Between May 2015 and May 2018, a total of 232 patients were enrolled at 5 centers. After a median of 189 (interquartile range: 160 to 202) days, in-lesion LLL was significantly lower in the DCB group (0.04 vs. 0.17 mm; $p = 0.001$ for noninferiority; $p = 0.03$ for superiority). Percent diameter stenosis and minimal lumen diameter were not significantly different. At 12-month clinical follow-up, major adverse cardiac events occurred in 7.5% of the DES group and in 5.6% of the DCB group ($p = 0.55$). There was a numerically higher incidence of spontaneous myocardial infarction (4.7% vs. 1.9%; $p = 0.23$) and vessel thrombosis (1.8% vs. 0%; $p = 0.15$) in the DES arm.

CONCLUSIONS In this multicenter randomized clinical trial in patients with de novo SVD lesions, a new-generation DCB was found superior to EES in terms of LLL as the angiographic pattern and comparable in terms of clinical outcome. (Drug Eluting Balloon Efficacy for Small Coronary Vessel Disease Treatment [PICCOLETO II]; NCT03899818) (J Am Coll Cardiol Intv 2020;13:2840-9) © 2020 Published by Elsevier on behalf of the American College of Cardiology Foundation.

From the ^aCardiovascular Research Team, San Carlo Clinic, Milano, Italy; ^bCardiology Department, Hospital de la Princesa, Madrid, Spain; ^cInterventional Cardiology, Giaccone Hospital, University of Palermo, Palermo, Italy; ^dInterventional Cardiology, ASST Patebonetmelli-Sacco, Milano, Italy; and the ^eInterventional Cardiology, San Giovanni di Dio Hospital, Trapani, Italy. The authors attest they are in compliance with human studies committees and animal welfare regulations of the authors' institutions and Food and Drug Administration guidelines, including patient consent where appropriate. For more information, visit the [Author Center](#).

Manuscript received May 20, 2020; revised manuscript received July 28, 2020; accepted August 19, 2020.

ISSN 1936-8798/\$36.00

<https://doi.org/10.1016/j.jcin.2020.08.035>

Table 6

DEB VS DES
Subgroup Analysis of In-Stent (In-Balloon) Late Loss

	No. of Lesions		Late Loss, mm		p Value for Interaction
	DEB	PES	DEB	PES	
Diabetes					
Yes	32	31	0.05 ± 0.41	0.32 ± 0.52	0.001
No	49	51	0.10 ± 0.38	0.28 ± 0.39	0.06
Reference vessel diameter					
<2.25 mm	54	41	0.07 ± 0.35	0.29 ± 0.41	0.006
2.25-2.5 mm	19	31	0.08 ± 0.41	0.37 ± 0.49	0.02
Lesion length					
≤13.9 mm (median)	40	41	0.05 ± 0.33	0.29 ± 0.45	0.008
>13.9 mm (median)	41	41	0.11 ± 0.42	0.30 ± 0.43	0.03
DEB only	67	82	0.02 ± 0.32	0.29 ± 0.44	<0.001
DEB + BMS	14	82	0.37 ± 0.51	0.29 ± 0.44	0.59

enter Study Comparing
Luting Balloon With a
ent in Small Coronary Vessels

tion and Late Loss Optimization) Study

ombo, MD,* Fausto Castriota, MD;† Antonio Micari, MD;‡
scò De Felice, MD;|| Alfredo Marchese, MD;¶ Maurizio Tespili, MD;#
A. Sgueglia, MD;†† Francesca Buffoli, MD;‡‡
nando Varbella, MD;||| Alberto Menozzi, MD;¶¶
me, Bari, Bergamo, Latina, Mantova, Catania, Torino, and Parma, Italy

dy was to evaluate the efficacy of drug-eluting balloons (DEB) compared with paclitaxel-eluting balloons (PES) for the reduction of restenosis in small vessels.

own to be effective in the treatment of coronary in-stent restenosis, but data are limited to date in de novo disease.

tion and Late Loss Optimization) is a prospective, multicenter trial that randomized 182 patients to paclitaxel-eluting balloons (DEB) or paclitaxel-eluting stents (PES) for the reduction of restenosis in small vessels (reference diameter <2.8 mm) to treatment with paclitaxel DEB and paclitaxel-eluting stent implantation (n = 90) or PES implantation (n = 92). The primary endpoint was noninferiority of in-stent (in-balloon) late loss with DEB compared with PES (0.08 ± 0.38 mm vs. 0.29 ± 0.44 mm; difference = 0.21 mm; 95% confidence interval = 0.34 to −0.99; p_{noninferiority} < 0.001; p_{superiority} = 0.001). At 6 months, DEB and PES were asistics were well matched, except for a smaller vessel size in the DEB group (2.15 ± 0.27 mm vs. 2.36 ± 0.30 mm; p = 0.003). The majority (89%) of lesions involved vessels with a diameter <2.5 mm. Balloons were used in 20% of lesions in the DEB group. The primary endpoint of in-stent (in-balloon) late loss was met with DEB compared with PES (0.08 ± 0.38 mm vs. 0.29 ± 0.44 mm; difference = 0.21 mm; 95% confidence interval = 0.34 to −0.99; p_{noninferiority} < 0.001; p_{superiority} = 0.001). At 6 months, DEB and PES were astients with small vessel (<2.8 mm)
use Randomized in a 1:1 fashionballoon and
PES Group (n=92)
Paclitaxel-eluting stent implantation in 98 lesions

1: Lost at follow-up

ow-up at 6-
91 (98.9%) patients with clinical follow-up at 6-
months1: Angio
14: Refused Angio
1: Diedfollow-up of
76 (82.6%) patients with angiographic follow-up of
82 (83.7%) lesions included in the primary analysis

Corelab and CEC Adjudication

Restore DCB VS the RESOLUTE Integrity DES

Small Vessel Group					
	Restore DCB Group	Resolute DES Group	Difference (95% CI)	p Value	Very Small Vessel Group
Pre-procedure					n = 32
Reference vessel diameter, mm					0.1 1.86 ± 0.28
Minimal luminal diameter, mm					0.2 0.48 ± 0.22
Diameter stenosis, %					0.0 74.3 ± 10.7
Lesion length, mm					0.3 12.2 ± 5.6
Post-procedure					n = 32
Minimal luminal diameter, mm					0.01 1.40 ± 0.24
In-device					0.01 1.38 ± 0.22
In-segment					0.01 23.4 ± 10.2
Diameter stenosis, %					0.01 23.7 ± 10.1
In-device					
In-segment					
9-month follow-up QCA	n = 100	n = 93			n = 29
Minimal luminal diameter, mm					
In-device	1.40 ± 0.43	1.75 ± 0.39	-0.4 (-0.5 to -0.2)	<0.001	1.14 ± 0.46
In-segment	1.40 ± 0.42	1.71 ± 0.39	-0.3 (-0.4 to -0.2)	<0.001	1.12 ± 0.44
Diameter stenosis, %					
In-device	29.3 ± 20.2	22.8 ± 15.3	6.5 (1.5 to 11.6)	0.01	37.3 ± 22.5
In-segment	29.3 ± 20.2	23.9 ± 15.9	5.5 (0.3 to 10.6)	0.04	38.4 ± 21.5
Late lumen loss, mm					
In-device	0.26 ± 0.42	0.30 ± 0.35	-0.1 (-0.2 to 0.1)	0.41	0.28 ± 0.40
In-segment	0.25 ± 0.42	0.27 ± 0.36	-0.02 (-0.1 to 0.1)	0.73	0.27 ± 0.38
Net luminal gain, * mm					
In-device	0.78 ± 0.45	1.11 ± 0.43	-0.3 (-0.5 to -0.2)	<0.001	0.66 ± 0.47
In-segment	0.77 ± 0.45	1.08 ± 0.42	-0.3 (-0.4 to -0.2)	<0.001	0.65 ± 0.46
Binary restenosis, %					
In-device	11.0 (11)	7.5 (7)	3.5 (-4.7 to 11.6)	0.40	17.2 (5)
In-segment	11.0 (11)	8.6 (8)	2.4 (-6.0 to 10.8)	0.58	17.2 (5)

The Restore DCB was noninferior to the second-generation RESOLUTE Integrity DES for the secondary endpoint of in-segment (MLD; LLL)

RESTORE

JACC: CARDIOVASCULAR INTERVENTIONS
© 2018 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION
PUBLISHED BY ELSEVIER

Vol. 11, No. 23, 2018

Drug-Coated Balloon Versus Drug-Eluting Stent for Small-Vessel Disease

The RESTORE SVD China Randomized Trial

Yida Tang, MD,^{1,*} Shubin Qiao, MD,^{1,*} Xi Su, MD,¹ Yundai Chen, MD,¹ Zening Jin, MD,¹ Hui Chen, MD,¹ Biao Xu, MD,¹ Xiangqin Kong, MD,¹ Wenyue Pang, MD,¹ Yong Liu, MD,¹ Zaixin Yu, MD,¹ Xue Li, MD,¹ Hui Li, MD,¹ Yanyan Zhao, BS,¹ Yang Wang, MSC,¹ Wei Li, PhD,¹ Jian Tian, MD,¹ Changdong Guan, MSC,¹ Bo Xu, MBBS,¹ Runlin Gao, MD,² for the RESTORE SVD China Investigators

ABSTRACT

OBJECTIVES The aim of this study was to evaluate the angiographic efficacy and clinical outcomes of the Restore paclitaxel-coated balloon in a randomized trial designed to enable its approval with an indication for small-vessel disease (SVD).

BACKGROUND Higher rates of restenosis and stent thrombosis limit the effectiveness of drug-eluting stent (DES) treatment of SVD. Whether a drug-coated balloon (DCB)-only strategy is effective in de novo SVD is not yet established.

METHODS In the noninferiority RESTORE SVD China trial, eligible patients with reference vessel diameter ≥ 2.25 and ≤ 2.75 mm were randomized to the Restore DCB or the RESOLUTE Integrity DES in a 1:1 ratio stratified by diabetes and number of lesions treated. Patients with RVD ≥ 2.00 and < 2.25 mm were enrolled in a nested very small vessel registry. Angiographic and clinical follow-up were planned at 9 months and 1 year, respectively, in all patients. The study was powered for the primary endpoint of 9-month in-segment percentage diameter stenosis.

RESULTS Between August 2016 and June 2017, a total of 230 subjects at 12 sites were randomized to the DCB group (n = 116) or DES group (n = 114); 32 patients were treated with the DCB in the very small vessel cohort. Nine-month in-segment percentage diameter stenosis was 29.6 ± 2.0% with the DCB versus 24.1 ± 2.0% with the DES; the 1-sided 97.5% upper confidence limit of the difference was 10.9%, achieving noninferiority of the DCB compared with the DES (p for noninferiority < 0.001). The DCB and DES had comparable 1-year rates of target lesion failure (4.4% vs. 2.6%, p = 0.72).

CONCLUSIONS In this multicenter randomized trial, the Restore DCB was noninferior to the RESOLUTE DES for 9-month in-segment percentage diameter stenosis. Assess the Efficacy and Safety of RESTORE Paclitaxel Eluting Balloon Versus RESOLUTE Zotarolimus Eluting Stent for the Treatment of Small Coronary Vessel Disease; NCT02946307 (J Am Coll Cardiol Intv 2018;11:2381-92) © 2018 by the American College of Cardiology Foundation.

From the *Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China; ¹Department of Cardiology, Wuhan Asia Heart Hospital, Wuhan, China; ²Department of Cardiology, Chinese PLA General Hospital, Beijing, China; ³Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; ⁴Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; ⁵Department of Cardiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China; ⁶Department of Cardiology, Shantou Hospital of Chinese Medical University, Shantou, China; ⁷Department of Cardiology, the Fourth Central Hospital of Tianjin, Tianjin, China; ⁸Department of Cardiology, Xiangya Hospital of Central South University, Changsha, China; ⁹Department of Cardiology, Tangdu Hospital of the Fourth Military Medical University, Xi'an, China; ¹⁰Department of Cardiology, Daxing Olifeld General Hospital, Beijing, China; ¹¹Medical Research and Biometrics Center, National Center for Cardiovascular Diseases of China, Beijing, China; and the ¹²Catheterization Laboratories, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China. This study was sponsored by Cardionovum through an institutional research grant. The executive committee, together with the sponsor, designed the RESTORE SVD China trial. The sponsor

ISSN 1936-8798/\$36.00

<https://doi.org/10.1016/j.jcin.2018.09.009>

eligible for enrolment

- acute coronary syndrome,
- chronic angina pectoris,
- or silent ischemia, angiographic lesions in native coronary arteries with a diameter of 2 mm to less than 3 mm.

randomisation was possible

predilatation of the lesion with an angioplasty balloon was successful—ie, if an acceptable angiographic result was obtained (no higher-grade dissections National Heart, Lung, and Blood Institute grade C to F, no decreased blood flow (thrombolysis in myocardial infarction score ≤ 2), or no residual stenosis $> 30\%$)

In summary, BASKET-SMALL 2 - first large randomised controlled trial tested the efficacy of a paclitaxel-iopromide-coated DCB versus second-generation DES in a large all-comer population regarding clinical endpoints. Study showed that DCB are non-inferior to DES in lesions of small native coronary arteries regarding MACE up to 12 months, with similar event rates for both groups.

BASKET-SMALL 2

coated balloons for small coronary artery disease (BASKET-SMALL 2): an open-label randomised non-inferiority trial

Barah, Marc-Alexander Ohlow, Norman Mangner, Sven Mabius-Winkler, Gregor Leibundgut, Daniel Wellemann, Uchter, Matthias Schreiber, Felix Mahfoud, Axel Link, Frank-Peter Stephan, Christian Mueller, Peter Rickenbacher, Ute Gilgen, Stefan Osswald, Christoph Kaiser, Bruno Scheller, for the BASKET-SMALL 2 Investigators

coated balloons (DCB) are a novel therapeutic strategy for small native coronary artery disease. Safety and efficacy is poorly defined in comparison with drug-eluting stents (DES).

SMALL 2 was a multicentre, open-label, randomised non-inferiority trial. 758 patients with lesions < 3 mm in diameter in coronary vessels and an indication for percutaneous coronary intervention were randomised 1:1:1 to receive angioplasty with DCB versus implantation of a second-generation DES after predilatation via an interactive internet-based response system. Dual antiplatelet therapy was given per guidelines. The primary objective was to show non-inferiority of DCB versus DES regarding major adverse cardiac events (MACE; ie, cardiac death, non-fatal myocardial infarction, and target-vessel revascularisation) at 12 months. The non-inferiority margin was an absolute difference of 4% in MACE. This trial is registered at ClinicalTrials.gov, number NCT0174534.

April 10, 2012, and February 1, 2017, 382 patients were randomly assigned to the DCB group and 376 to the DES group. Non-inferiority of DCB versus DES was shown because the 95% CI of the absolute difference in the primary endpoint was below the predefined margin (-3.83 to 3.93% , $p=0.0217$). After 12 months, MACE were similar in both groups of the full-analysis population (MACE was 7.5% for the DCB and DES group; hazard ratio [HR] 0.97 [95% CI 0.58–1.64], $p=0.9180$). There were five (1.3%) deaths in the DES group and 12 (3.1%) in the DCB group (full analysis population). Probable or definite myocardial infarction [0.8%] in the DCB group vs four [1.1%] in the DES group; HR 0.73 [0.16–3.26] and major adverse events [0.8%] in the DCB group vs nine [2.4%] in the DES group; HR 0.45 [0.14–1.46] were the most frequent events.

small native coronary artery disease, DCB was non-inferior to DES regarding MACE up to 12 months, with similar event rates for both treatment groups.

Deutsche Forschungsgemeinschaft, Nationalfonds zur Förderung der Wissenschaftlichen Forschung, Basel Cardiovascular Center, and B Braun Medical AG.

Elsevier Ltd. All rights reserved.

drug-eluting stents (DES) are the standard of care for percutaneous coronary intervention in coronary artery disease.¹ However, the use of DES is restricted in small coronary arteries,² which are prone to bare metal stents (BMS) and second-generation DES.³ Coated balloons (DCB) are a novel concept for the treatment of coronary artery disease and an established strategy for restenosis of BMS⁴ and DES.^{5,6} Based on the fast delivery of highly concentrated drugs to the vessel wall after single balloon angioplasty and flow-limiting dissections, DCB overcome the major limitation of angioplasty, optimal lesion preparation is

essential, as outlined in recommendations.⁷ The feasibility of the technique in small-vessel coronary artery disease has been suggested in several pilot studies.^{8–10}

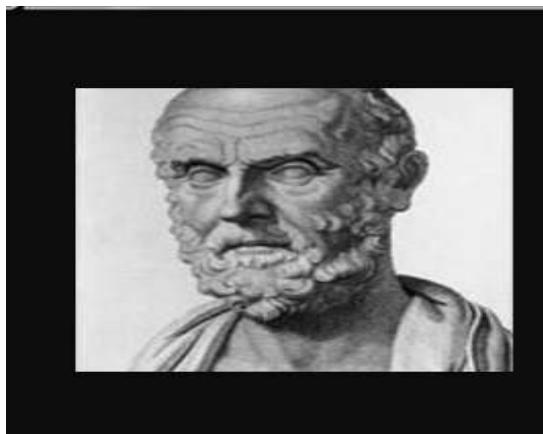
However, to our knowledge, a large randomised trial comparing DCB with second-generation DES with respect to clinical endpoints has not been done.

The Basel Kosten Effektivitäts Trial—Drug-Coated

Balloons versus Drug-eluting Stents in Small Vessel Interventions (BASKET-SMALL 2) trial aimed to test the non-inferiority of DCB versus second-generation DES in small-vessel coronary artery disease using a 12-month composite clinical endpoint of major adverse cardiac events (MACE), consisting of cardiac death, non-fatal myocardial infarction, and target vessel revascularisation in a large all-comer population.

Published online August 28, 2018. <http://dx.doi.org/10.1016/j.ohrtm.2018.07.1719>

Published online August 28, 2018
<http://dx.doi.org/10.1016/j.ohrtm.2018.07.1719>


See Online Comment
<http://dx.doi.org/10.1016/j.ohrtm.2018.07.1719>

University Hospital Basel,
University of Basel, Basel,
Switzerland. Prof S V Jeger MD,
Dr F Stephan MD,
Prof C Mueller MD,
Prof P Buerkhardt MD,
Prof M Czerny MD,
Prof C Strohm MD,
Prof C Kaser MD,
Krankenhaus Westfalen,
Dortmund, Germany.
(A Fach MEV), Central Clinic,
Bad Berka, Germany.
(Prof M A Oehne MD,
S Rücken MD, M Schreiber MD),
Herzzentrum Dresden,
Technische Universität
Dresden, Dresden, Germany
(Dr Mangner MD),
Prof A Link MD, Heart Center
Leipzig, University Hospital
Leipzig, Germany. (Dr Mangner,
Prof A Link MD),
Prof M A Oehne MD,
S Rücken MD, M Schreiber MD),
University Ulm, Ulm, Germany
(Prof Witten MD) and
University Hospital Saarland,
Homburg, Germany
(Prof F Marthaler MD),
Prof B Scheller MD)

Correspondence to:
Prof Rainer Y Jeger, University
Hospital Basel, University of
Basel, Basel 4031, Switzerland
rainer.jeger@uhbs.ch

Conclusion

-
- *The Nature of The Problem*
Life is short,art is long,opportunity fleeting,experience treacherous,judgment difficult..
- Hippocrates (460-400 B.C)
-

